A drug developed by an Iowa State University biomedical researcher as a potential treatment for spinal muscular atrophy showed promising results in a recently published study.
Ravindra Singh, a professor of biomedical sciences in the ISU College of Veterinary Medicine, has been studying spinal muscular atrophy, a leading genetic cause of infant mortality, for years. His lab helped to identify a drug known as A15/283, an antisense oligonucleotide, as a potential treatment for spinal muscular atrophy.
In a study recently published in the peer-reviewed scientific journal Molecular Therapy, Singh and his co-authors showed the drug helped to combat the effects of the disease in mice with mild levels of the disorder.
Spinal muscular atrophy results from the loss or mutation of a gene called Survival Motor Neuron 1, often referred to as SMN1. If SMN1 is deleted or doesn’t function properly, not enough SMN protein is produced, giving rise to the disease.
The study found that mice that were given the treatment on the first and third days after birth increased SMN levels and alleviated some of the genetic effects of the disease. The study looked in particular at sex-specific symptoms, such as underdeveloped testes, and found the drug helped to normalize testicular growth in male mice. Singh said previous studies failed to control for how males and females may respond differently to the treatment, and this study provides insight into such questions.
“These results in the mouse model are very promising for the possible treatment of mild spinal muscular atrophy cases in children,” Singh said. “We’re hoping this line of research could someday lead to clinical trials, but more work remains before that can happen.”
The National Institutes of Health, the Iowa Center for Advanced Neurotoxicology and Salsbury Endowment supported the research.
Source: Iowa State University