Researchers examine proteins to identify what is 'broken' in tumor cells
The rogue cellular engine that drives a majority of ovarian cancers remains frustratingly difficult to disable. A new study comparing cancerous tissue with normal fallopian tube samples advances important insights about this machinery and confirms biological hallmarks of survival.
High-grade serous carcinoma is the most common type of ovarian cancer, and it has the lowest survival rate. To better understand the disease and its progression, researchers at the U.S. Department of Energy’s Pacific Northwest National Laboratory and their collaborators examined the proteome—thousands of proteins—in tissue samples taken from 83 patients around the world. Their results, published in the journal Cell Reports Medicine in April, could help identify more targeted treatments.
Hunting for ovarian cancer's 'off' switches
Successful treatment of any cancer involves stopping its abnormal cells from replicating and spreading. In the case of ovarian cancer—the fifth leading cause of cancer deaths in women—scientists are hunting for the right “off” switches to target.
“Cells are very complex pieces of machinery. There are many ways you can break the machinery and then end up with cancer,” said Karin Rodland, a PNNL scientist and the study’s corresponding author. “If you don't know what's broken, you can't fix it.”
A relatively new profiling technique called proteogenomics provides clues. Developed over the last two decades, proteogenomics looks not only at the genetics of cells but how they communicate and function via thousands of proteins. While earlier research methods focused on how genetic mutations are expressed via ribonucleic acid, or RNA, proteomic analysis reveals even more detail about what happens among cancerous cells.
Now, scientists are working to understand this universe of proteins as part of the National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium. As part of that effort, a landmark proteogenomic analysis of archived tumor samples in 2016 pinpointed specific cellular processes associated with ovarian high-grade serous carcinoma.