A University at Buffalo team has developed a new model of how information in the genome is organized, called the novel genome archipelago model (GAM). The model provides new insights into how a multitude of interactions among genes may affect normal development as well as mutations that lead to cancer and other diseases.
“GAM offers a physical basis for the idea of systems genomics, which has begun to emerge in recent years, in which individual genome elements are integrated into an ‘organism-like’ entity,” said Michal K. Stachowiak, PhD, professor in the Department of Pathology and Anatomical Sciences in the Jacobs School of Medicine and Biomedical Sciences at UB.
Stachowiak is senior author on the paper that describes the GAM, which was published in a special edition of the International Journal of Molecular Sciences entitled “Molecular Mechanisms of Neural Stem Cells – Systems Approach.”
The study advances the idea that the GAM is created through the interactions of distant chromosome regions and even different chromosomes.
Stachowiak explained that the study shows that tens of thousands of genes may engage in hundreds of millions of interactions, and that through these associations, genomic function is executed.
“This vast interactome, as we call it, truly constitutes a new code for the information that is stored and executed by the genome,” he said.
The interactions were mapped by first author Brandon Decker, PhD, when he was a graduate student in UB’s Genetics, Genomics and Bioinformatics program, working in Stachowiak’s laboratory. Decker is now a postdoctoral associate at the National Institute on Aging, part of the National Institutes of Health.
Stachowiak explained that the GAM is based on the idea that the genome is an archipelago of constantly changing ‘islands,’ and that when the islands form, they provide a blueprint for specific parts of the body and specific functions.
“A single small mutation may have broad impact on genomic function by disrupting multi-genome interactions or their control mechanism,” he said. “It is the understanding of these interactions that may bring our therapeutic efforts to new, unprecedented levels.”
Stachowiak explained that they assign the central role in organizing the GAM to a nuclear form of the protein FGFR1, which, through its Integrative Nuclear FGFR1 Signaling (INFS) mechanism, discovered in his lab, offers a new paradigm for genomic regulation of an organism’s development. He noted that recent studies by teams at other institutions have shown that INFS plays an important role in cancers including breast cancer.
“This is an example of how an advanced basic science becomes translated into clinical medicine and may offer new strategies for cancer treatments,” he said.
Stachowiak named his model to reflect his lifelong inspiration by the travels of Charles Darwin, who developed his theory of evolution after happening upon the islands of Galapagos. “We refer to different islands that form in the cell nucleus and, as we propose, orchestrate ontogenesis,” Stachowiak said.