Sanger researchers awarded £5million to tackle deadly brain cancer with ‘tissue time machine’

Researchers at the Sanger Institute have recently been awarded £5million from the Wellcome Leap programme, as part of the ‘Delta Tissue’ or ‘tissue time machine’ project. The project aims to profile the state of cells and tissues – that is their types, developmental trajectories, interactions, features, forms and functions – and predict the transition between states. In collaboration with researchers at the University of Cambridge, the German Cancer Research Centre (DKFZ) and The Francis Crick Institute, the Sanger Institute team will profile Glioblastoma multiforme (GBM) tumours using the latest genomic techniques. Their work will provide unprecedented detail about the states of these cancer cells and their tissue microenvironment, and potentially uncover new targets for treatment development.

Glioblastoma multiforme (GBM) is an aggressive type of brain tumour that is currently incurable. GBM is the most common type of primary malignant brain tumour in adults. The tumours are very varied – they contain a mixture of different cell types, and there is high heterogeneity in the genetic, transcriptional and epigenetic activity of the cells. Recent research has found that different states are highly dynamic in GBM, with cells transitioning from one state to another throughout tumour development as well as in disease relapse after therapy.

To understand the forces that drive the cell changes seen in GBM tumours, Sanger researchers plan to comprehensively characterise the cells and molecules of the tumour tissue in 2D and 3D. This will include using spatial genomic methods that can map the intracellular signals and interactions that influence the tumour cells – something that is not currently well understood. They will initially focus on immune cells and their role in the GBM by profiling samples from 50 patients. The samples will be taken during neurosurgeries by clinicians at Addenbrooke’s Hospital in Cambridge.

Source: Sanger Institute